
Mr G’s Java Jive: Math Operators and the Pots Program Page 8-1

Mr G’s Java Jive
#8: Math Operators and the Pots Program

With this handout you’ll learn about the standard math operators in Java and write a program to ship
pots from your ceramics shop.

Please Excuse My Dear Aunt Sally
If that heading made any sense to you at all, then you know that I’m talking about the standard six
math operations of parentheses, exponentiation, multiplication, division, addition, and subtraction,
because this is the mnemonic device used for remembering the order of operations.

Java has five of the standard math operators and adds one that wasn’t part of the original list.
We’ll take a look at them right now:

Operator Used For
+ addition
- subtraction
* multiplication
/ division
% mod (modulus)
() grouping

A careful look at this little chart will show that exponentiation is the mission operation, and that mod is
the newly added one. More on this in a minute. It’s time for a short math lesson.

Integer Math
We all know that 2+2=4, that 7-4=3, that 9*3=27, and that 48/8=6. But what about 17/2? You’re
probably tempted to say that the answer is 8.5, but it’s not. At least not in Java. That’s because 17 and
2 are both integers, and since both numbers are integers, Java does integer division.

What’s integer division? That’s when you figure out how many whole times one number goes into
another. Since 2 only goes into 17 eight whole times, the answer is 8.

I said that Java did integer division on those two numbers because they were both integers (or of
the int type). But if at least one of those numbers were a decimal, then you’d end up with standard
decimal division. For example, either 17.0/2, 17/2.0, or 17.0/2.0 would give the expected answer of
8.5.

Now that you know this, we can take a look at our new operator.

The Mod Operator
No, this isn’t something out of Austin Powers. Mod (as I knew it in other programming languages) is
short for modulus, and I’ll give a few examples to see if you can figure out how it works:

12/5=2
12%5=2
7/2=3
7%2=1
6/3=2
6%2=0

Give yourself a minute or two to think about this before you turn the page and see the answer.

Mr G’s Java Jive: Math Operators and the Pots Program Page 8-2

What Mod Does
So now that you’ve had a chance to think about it, did you figure out that mod gives the remainder of a
division problem? Let’s take a look at the first one. 12/5=2 because 5 only goes into 12 two whole
times. 12%5=2 because the remainder when you divide 12 by 5 is 2.

Let’s try another one. 7/2=3 because 2 only goes into 7 three whole times. 7%2=1 because the
remainder when you divide 7 by 2 is 1.

We’ll do one more and then move on. 6/3=2 because 3 goes into 6 exactly two times. That was
simple. However, 6%3=0 because there is no remainder when you divide 6 by 3.

Now, with that little lesson out of the way, it’s time to get to work on our next program.

The Pots Program
For this program, you’re the owner of a ceramics shop that sells pots and ships them out to people.
Unlike Amazon.com, which seems to always ship everything in the largest box, you have three sizes of
boxes to choose from: small, medium, and large. Each box holds 1, 4, and 9 pots respectively. Your job
is to ask your customers how many pots they want, and then tell how many boxes of each size they’ll be
shipped in.

We’ll start off with just the framework of our code to show what we’re going to need to do:

//Pots
//a program to ship pots from my ceramics shop
//7.13.06 Clark Kent

public class Pots
{//start class
 public static void main()
 {//start main
 //variables

 //get input

 //do calculations

 //give output

 }//end main
}//end class

A Simple Conversation
Now that we have our framework, let’s just write some simple code that greets the users and thanks
them for shopping at our ceramics shop. Then we’ll compile it and see if it runs.

{//start main
 //variables
 String name;

 //get input
 System.out.print("Hi. Welcome to my ceramics shop. What's your name? ");
 name=gatling.getLine();

 //do calculations

 //give output
 System.out.println("Thanks for shopping at my ceramics shop, "+name+".");
 System.out.println("Please come again!");

}//end main

Once we know that this works, it’s time to add a little more to the program.

Mr G’s Java Jive: Math Operators and the Pots Program Page 8-3

Find Out What They Want and How They Want It
Now that we have the basics taken care of, and we know that the program works so far, it’s time to get
some product info from the user and respond to it. Make the following changes:

//variables
 String name;
 int pots;

 //get input
 System.out.print("Hi. Welcome to my ceramics shop. What's your name? ");
 name=gatling.getLine();
 System.out.print("How many pots would you like to order, "+name+"? ");
 pots=gatling.getInt();

 //do calculations

 //give output
 System.out.println("Thanks for shopping at my ceramics shop, "+name+".");
 System.out.println("Your "+pots+" pots will be shipped tomorrow.");
 System.out.println("Please come again!");

Here we added a variable for the number of pots the user will be ordering. We’ve also added two lines
for getting the information from the user and a line for confirming that we have the user’s order
information. Now it’s time to think about the shipping

Finally, We Talk About Constants
There are three box sizes, small, medium, and large, and they hold 1 , 4, and 9 pots respectively. We
could create regular variables to hold these values, but these are special values. They’re special because
we don’t want them to change, we want them to remain constant. In fact, in any other programming
language, we’d define them as constants.

However, Java is a little funny about this. For some reason it doesn’t use the word constant.
Instead, Java says that when you don’t want the value of a variable to change, you call it a final because
you’re setting up the final value of it. With this in mind, let’s enter the following code:

//variables
 final int LG = 9;
 final int MD = 4;
 final int SM = 1;
 String name;
 int pots;

There is a programming convention that the names of all constants (even if they’re called finals) are
done in all caps. This is so that everyone knows that they’re constants (oops, I mean finals). The
computer doesn’t really care how you do it, but it’s a lot easier for the people who have to read your
code.

As wonderful as these values are, we still need a few standard, garden variety, variables.

Boxes and Leftovers
In the code modifications shown below we’ve added four new variables. One for the number of each
type of box we’ll need and one for how many pots are leftover after we’ve filled the previous size box.

//variables
 final int LG = 9;
 final int MD = 4;
 final int SM = 1;
 String name;
 int pots, lgnum, mdnum, smnum, left;

Now we’re finally ready to do some calculations!

Mr G’s Java Jive: Math Operators and the Pots Program Page 8-4

Packing the Boxes
When you’re trying to figure out how many boxes of different sizes you need, it’s always best to start
with the largest boxes and then work down to the smallest. That’s exactly what the code shown below
does. First it checks to see if there are enough pots to totally fill a bunch of large boxes. Then it finds
out how many are left over and tries to put them into medium boxes. Finally, it finds how many are left
over from that and tries to put them into small boxes:

//do calculations
 lgnum=pots/LG;
 left=pots%LG;
 mdnum=left/MD;
 left=left%MD;
 smnum=left/SM;
 left=left%SM;

Additional Output
Now that the program knows how many of each type of box the user needs, it’s time to send that
information out the screen. Check out the code shown below:

//give output
 System.out.println("Thanks for shopping at my ceramics shop, "+name+".");
 System.out.println("Your "+pots+" pots will be shipped tomorrow in:");
 System.out.println("\t"+lgnum+" large box(es).");
 System.out.println("\t"+mdnum+" medium box(es).");
 System.out.println("\t"+smnum+" small box(es).");
 System.out.println("Please come again!");

Right now you’re probably wondering what on earth \t means. It’s a control character that means to
insert a tab (usually eight spaces) at that point. If you paid careful attention, you also saw that I
changed the ending of the second println in this section.

Compile it, run it, and see what happens!

A Waste of Boxes
If you typed in everything right, the program should work just fine so far, but there’s one little
problem: it’s a little too picky about things. What do I mean? Run the program and tell it that you need
18 pots. It should tell you that they’ll be shipped in 2 large boxes. That makes perfect sense because
18 pots fit exactly in that many boxes.

However, if you run it with 17 pots, it tells you that they’ll be shipped in 1 large and 2 medium
boxes. On the one hand that makes perfect sense, since it takes one totally full large box and two
totally full medium boxes to ship 17 pots. On the other hand, if you think about it, that’s a waste of
boxes and postage. Why should sending 17 pots require more boxes than sending 18? It’s all because
the program is only capable of dealing with totally full boxes. This needs to change, and we’ll take care
of that in handout #9.

